Function to conduct ontology enrichment analysis given a group of domains

Description

dcEnrichment is supposed to conduct enrichment analysis for an input group of domains using a specified ontology. It returns an object of S4 class "Eoutput". Enrichment analysis is based on either Fisher's exact test or Hypergeometric test. The test can respect the hierarchy of the ontology. The user can customise the background domains; otherwise, the function will use all annotatable domains as the test background

Usage

dcEnrichment(data, background = NULL, domain = c(NA, "SCOP.sf", "SCOP.fa", "Pfam", 
  "InterPro", "Rfam"), ontology = c(NA, "GOBP", "GOMF", "GOCC", "DO", "HPPA", "HPMI", 
      "HPON", "MP", "EC", "KW", "UP"), sizeRange = c(10, 1000), min.overlap = 3, which_distance = NULL, 
      test = c("HypergeoTest", "FisherTest", "BinomialTest"), p.adjust.method = c("BH", 
          "BY", "bonferroni", "holm", "hochberg", "hommel"), ontology.algorithm = c("none", 
          "pc", "elim", "lea"), elim.pvalue = 0.01, lea.depth = 2, verbose = T, domain.RData = NULL, 
      ontology.RData = NULL, annotations.RData = NULL, RData.location = "http://dcgor.r-forge.r-project.org/data")

Arguments

data
an input vector. It contains id for a list of domains, for example, sunids for SCOP domains
background
a background vector. It contains id for a list of background domains, for example, sunids for SCOP domains. If NULL, by default all annotatable domains are used as background
domain
the domain identity. It can be one of 'SCOP.sf' for SCOP superfamilies, 'SCOP.fa' for SCOP families, 'Pfam' for Pfam domains, 'InterPro' for InterPro domains, 'Rfam' for Rfam RNA families
ontology
the ontology identity. It can be "GOBP" for Gene Ontology Biological Process, "GOMF" for Gene Ontology Molecular Function, "GOCC" for Gene Ontology Cellular Component, "DO" for Disease Ontology, "HPPA" for Human Phenotype Phenotypic Abnormality, "HPMI" for Human Phenotype Mode of Inheritance, "HPON" for Human Phenotype ONset and clinical course, "MP" for Mammalian Phenotype, "EC" for Enzyme Commission, "KW" for UniProtKB KeyWords, "UP" for UniProtKB UniPathway. For details on the eligibility for pairs of input domain and ontology, please refer to the online Documentations at http://supfam.org/dcGOR/docs.html
sizeRange
the minimum and maximum size of members of each term in consideration. By default, it sets to a minimum of 10 but no more than 1000
min.overlap
the minimum number of overlaps. Only those terms that overlap with input data at least min.overlap (3 domains by default) will be processed
which_distance
which distance of terms in the ontology is used to restrict terms in consideration. By default, it sets to 'NULL' to consider all distances
test
the statistic test used. It can be "FisherTest" for using fisher's exact test, "HypergeoTest" for using hypergeometric test, or "BinomialTest" for using binomial test. Fisher's exact test is to test the independence between domain group (domains belonging to a group or not) and domain annotation (domains annotated by a term or not), and thus compare sampling to the left part of background (after sampling without replacement). Hypergeometric test is to sample at random (without replacement) from the background containing annotated and non-annotated domains, and thus compare sampling to background. Unlike hypergeometric test, binomial test is to sample at random (with replacement) from the background with the constant probability. In terms of the ease of finding the significance, they are in order: hypergeometric test > binomial test > fisher's exact test. In other words, in terms of the calculated p-value, hypergeometric test < binomial test < fisher's exact test
p.adjust.method
the method used to adjust p-values. It can be one of "BH", "BY", "bonferroni", "holm", "hochberg" and "hommel". The first two methods "BH" (widely used) and "BY" control the false discovery rate (FDR: the expected proportion of false discoveries amongst the rejected hypotheses); the last four methods "bonferroni", "holm", "hochberg" and "hommel" are designed to give strong control of the family-wise error rate (FWER). Notes: FDR is a less stringent condition than FWER
ontology.algorithm
the algorithm used to account for the hierarchy of the ontology. It can be one of "none", "pc", "elim" and "lea". For details, please see 'Note'
elim.pvalue
the parameter only used when "ontology.algorithm" is "elim". It is used to control how to declare a signficantly enriched term (and subsequently all domains in this term are eliminated from all its ancestors)
lea.depth
the parameter only used when "ontology.algorithm" is "lea". It is used to control how many maximum depth is uded to consider the children of a term (and subsequently all domains in these children term are eliminated from the use for the recalculation of the signifance at this term)
verbose
logical to indicate whether the messages will be displayed in the screen. By default, it sets to TRUE for display
domain.RData
a file name for RData-formatted file containing an object of S4 class 'InfoDataFrame' (i.g. domain). By default, it is NULL. It is only needed when the user wants to customise enrichment analysis using their own data. See dcBuildInfoDataFrame for how to creat this object
ontology.RData
a file name for RData-formatted file containing an object of S4 class 'Onto' (i.g. ontology). By default, it is NULL. It is only needed when the user wants to customise enrichment analysis using their own data. See dcBuildOnto for how to creat this object
annotations.RData
a file name for RData-formatted file containing an object of S4 class 'Anno' (i.g. annotations). By default, it is NULL. It is only needed when the user wants to customise enrichment analysis using their own data. See dcBuildAnno for how to creat this object
RData.location
the characters to tell the location of built-in RData files. By default, it remotely locates at "https://github.com/hfang-bristol/RDataCentre/blob/master/dcGOR" and "http://dcgor.r-forge.r-project.org/data". For the user equipped with fast internet connection, this option can be just left as default. But it is always advisable to download these files locally. Especially when the user needs to run this function many times, there is no need to ask the function to remotely download every time (also it will unnecessarily increase the runtime). For examples, these files (as a whole or part of them) can be first downloaded into your current working directory, and then set this option as: RData.location=".". If RData to load is already part of package itself, this parameter can be ignored (since this function will try to load it via function data first). Here is the UNIX command for downloading all RData files (preserving the directory structure): wget -r -l2 -A "*.RData" -np -nH --cut-dirs=0 "http://dcgor.r-forge.r-project.org/data"

Value

an object of S4 class Eoutput, with following slots:

  • domain: a character specifying the domain identity
  • ontology: a character specifying the ontology used
  • term_info: a matrix of nTerm X 5 containing term information, where nTerm is the number of terms in consideration, and the 5 columns are "term_id" (i.e. "Term ID"), "term_name" (i.e. "Term Name"), "namespace" (i.e. "Term Namespace"), "distance" (i.e. "Term Distance") and "IC" (i.e. "Information Content for the term based on annotation frequency by it")
  • anno: a list of terms, each storing annotated domain members (also within the background domains). Always, terms are identified by "term_id" and domain members identified by their ids (e.g. sunids for SCOP domains)
  • data: a vector containing input data in consideration. It is not always the same as the input data as only those mappable and annotatable are retained
  • background: a vector containing background in consideration. It is not always the same as the input background as only those mappable/annotatable are retained
  • overlap: a list of terms, each storing domains overlapped between domains annotated by a term and domains in the input data (i.e. the domains of interest). Always, terms are identified by "term_id" and domain members identified by their IDs (e.g. sunids for SCOP domains)
  • zscore: a vector containing z-scores
  • pvalue: a vector containing p-values
  • adjp: a vector containing adjusted p-values. It is the p value but after being adjusted for multiple comparisons

Note

The interpretation of the algorithms used to account for the hierarchy of the ontology is:

  • "none": does not consider the ontology hierarchy at all.
  • "lea": computers the significance of a term in terms of the significance of its children at the maximum depth (e.g. 2). Precisely, once domains are already annotated to any children terms with a more signficance than itself, then all these domains are eliminated from the use for the recalculation of the signifance at that term. The final p-values takes the maximum of the original p-value and the recalculated p-value.
  • "elim": computers the significance of a term in terms of the significance of its all children. Precisely, once domains are already annotated to a signficantly enriched term under the cutoff of e.g. pvalue<1e-2, all these domains are eliminated from the ancestors of that term).
  • "pc": requires the significance of a term not only using the whole domains as background but also using domains annotated to all its direct parents/ancestors as background. The final p-value takes the maximum of both p-values in these two calculations.
  • "Notes": the order of the number of significant terms is: "none" > "lea" > "elim" > "pc".

Examples

# 1) Enrichment analysis for SCOP domain superfamilies (sf) ## 1a) load SCOP.sf (as 'InfoDataFrame' object) SCOP.sf <- dcRDataLoader('SCOP.sf')
'SCOP.sf' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment
### randomly select 50 domains as a list of domains of interest data <- sample(rowNames(SCOP.sf), 50) ## 1b) perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, domain="SCOP.sf", ontology="GOMF")
Start at 2015-07-23 12:50:56 First, load the ontology 'GOMF', the domain 'SCOP.sf', and their associations (2015-07-23 12:50:56) ... 'onto.GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'SCOP.sf' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'SCOP.sf2GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:51:24) ... There are 811 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:51:24) ... End at 2015-07-23 12:51:24 Runtime in total is: 28 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'SCOP.sf' @ontology: 'GOMF' @term_info: a data.frame of 162 terms X 5 information @anno: a list of 162 terms, each storing annotated domains @data: a vector containing a group of 25 input domains (annotatable) @background: a vector containing a group of 1083 background domains (annotatable) @overlap: a list of 162 terms, each containing domains overlapped with input domains @zscore: a vector of 162 terms, containing z-scores @pvalue: a vector of 162 terms, containing p-values @adjp: a vector of 162 terms, containing adjusted p-values In summary, a total of 162 terms ('GOMF') are analysed for a group of 25 input domains ('SCOP.sf')
## 1c) view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=TRUE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0008066 GO:0008066 40 25 3 2.23 0.012 0.49 GO:0008238 GO:0008238 65 25 4 2.13 0.014 0.49 GO:1901363 GO:1901363 487 25 16 1.93 0.016 0.49 GO:0097159 GO:0097159 492 25 16 1.89 0.018 0.49 GO:0035014 GO:0035014 98 25 5 1.93 0.020 0.49 GO:0005275 GO:0005275 57 25 3 1.53 0.038 0.49 GO:0005488 GO:0005488 887 25 23 1.33 0.043 0.49 GO:0030234 GO:0030234 408 25 13 1.49 0.046 0.49 GO:0022804 GO:0022804 369 25 12 1.49 0.047 0.49 GO:0005319 GO:0005319 184 25 7 1.48 0.047 0.49 term_name term_namespace GO:0008066 glutamate receptor activity molecular_function GO:0008238 exopeptidase activity molecular_function GO:1901363 heterocyclic compound binding molecular_function GO:0097159 organic cyclic compound binding molecular_function GO:0035014 phosphatidylinositol 3-kinase regulator activity molecular_function GO:0005275 amine transmembrane transporter activity molecular_function GO:0005488 binding molecular_function GO:0030234 enzyme regulator activity molecular_function GO:0022804 active transmembrane transporter activity molecular_function GO:0005319 lipid transporter activity molecular_function term_distance GO:0008066 5 GO:0008238 5 GO:1901363 2 GO:0097159 2 GO:0035014 3 GO:0005275 4 GO:0005488 1 GO:0030234 1 GO:0022804 3 GO:0005319 3 members GO:0008066 52743,49854,54768 GO:0008238 51182,48264,54768,144217 GO:1901363 52029,52440,56024,109880,63763,52949,48264,55144,103637,49329,55287,47027,52743,52777,49854,54768 GO:0097159 52029,52440,56024,109880,63763,52949,48264,55144,103637,49329,55287,47027,52743,52777,49854,54768 GO:0035014 63763,51182,49329,109640,144217 GO:0005275 56024,55144,52777 GO:0005488 48113,52029,52440,56024,109880,63763,52949,47668,51182,75620,48264,55144,103637,49329,109640,101353,55287,47027,52743,52777,49854,54768,144217 GO:0030234 48113,52029,52440,56024,63763,51182,48264,103637,49329,109640,52743,49854,144217 GO:0022804 46906,52029,52440,56024,109880,63763,75620,55144,103637,52743,52777,54768 GO:0005319 48113,52029,52440,48264,49329,52777,54768
## 1d) visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOMF' containing 16 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
## 1e) the same as above but using a customised background ### randomly select 500 domains as background background <- sample(rowNames(SCOP.sf), 500) ### perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, background=background, domain="SCOP.sf", ontology="GOMF")
Start at 2015-07-23 12:51:35 First, load the ontology 'GOMF', the domain 'SCOP.sf', and their associations (2015-07-23 12:51:35) ... 'onto.GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'SCOP.sf' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'SCOP.sf2GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:51:50) ... There are 393 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:51:50) ... End at 2015-07-23 12:51:50 Runtime in total is: 15 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'SCOP.sf' @ontology: 'GOMF' @term_info: a data.frame of 162 terms X 5 information @anno: a list of 162 terms, each storing annotated domains @data: a vector containing a group of 25 input domains (annotatable) @background: a vector containing a group of 257 background domains (annotatable) @overlap: a list of 162 terms, each containing domains overlapped with input domains @zscore: a vector of 162 terms, containing z-scores @pvalue: a vector of 162 terms, containing p-values @adjp: a vector of 162 terms, containing adjusted p-values In summary, a total of 162 terms ('GOMF') are analysed for a group of 25 input domains ('SCOP.sf')
### view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=TRUE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0008066 GO:0008066 11 25 3 2.00 0.015 0.56 GO:0008238 GO:0008238 17 25 4 1.98 0.016 0.56 GO:1901363 GO:1901363 118 25 16 1.91 0.017 0.56 GO:0005275 GO:0005275 12 25 3 1.82 0.020 0.56 GO:0097159 GO:0097159 121 25 16 1.78 0.023 0.56 GO:0015662 GO:0015662 13 25 3 1.66 0.027 0.56 GO:0016796 GO:0016796 15 25 3 1.38 0.046 0.56 GO:0022804 GO:0022804 89 25 12 1.48 0.047 0.56 GO:0030234 GO:0030234 99 25 13 1.45 0.049 0.56 GO:0005515 GO:0005515 164 25 19 1.33 0.056 0.56 term_name GO:0008066 glutamate receptor activity GO:0008238 exopeptidase activity GO:1901363 heterocyclic compound binding GO:0005275 amine transmembrane transporter activity GO:0097159 organic cyclic compound binding GO:0015662 ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism GO:0016796 exonuclease activity, active with either ribo- or deoxyribonucleic acids and producing 5'-phosphomon GO:0022804 active transmembrane transporter activity GO:0030234 enzyme regulator activity GO:0005515 protein binding term_namespace term_distance GO:0008066 molecular_function 5 GO:0008238 molecular_function 5 GO:1901363 molecular_function 2 GO:0005275 molecular_function 4 GO:0097159 molecular_function 2 GO:0015662 molecular_function 12 GO:0016796 molecular_function 6 GO:0022804 molecular_function 3 GO:0030234 molecular_function 1 GO:0005515 molecular_function 2 members GO:0008066 54768,52743,49854 GO:0008238 54768,51182,48264,144217 GO:1901363 55287,103637,54768,48264,49329,63763,52440,52743,47027,52949,56024,55144,52777,49854,109880,52029 GO:0005275 56024,55144,52777 GO:0097159 55287,103637,54768,48264,49329,63763,52440,52743,47027,52949,56024,55144,52777,49854,109880,52029 GO:0015662 103637,54768,63763 GO:0016796 54768,75620,52777 GO:0022804 103637,54768,63763,52440,52743,75620,56024,55144,52777,109880,52029,46906 GO:0030234 103637,51182,48264,49329,63763,52440,144217,109640,52743,56024,48113,49854,52029 GO:0005515 55287,103637,54768,51182,48264,49329,63763,52440,144217,109640,52743,47027,75620,56024,55144,52777,48113,49854,52029
### visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOMF' containing 19 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
########################################################### # 2) Enrichment analysis for Pfam domains (Pfam) ## 2a) load Pfam (as 'InfoDataFrame' object) Pfam <- dcRDataLoader('Pfam')
'Pfam' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment
### randomly select 100 domains as a list of domains of interest data <- sample(rowNames(Pfam), 100) ## 2b) perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, domain="Pfam", ontology="GOMF")
Start at 2015-07-23 12:52:05 First, load the ontology 'GOMF', the domain 'Pfam', and their associations (2015-07-23 12:52:05) ... 'onto.GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Pfam' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Pfam2GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:52:20) ... There are 334 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:52:20) ... End at 2015-07-23 12:52:20 Runtime in total is: 15 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'Pfam' @ontology: 'GOMF' @term_info: a data.frame of 10 terms X 5 information @anno: a list of 10 terms, each storing annotated domains @data: a vector containing a group of 24 input domains (annotatable) @background: a vector containing a group of 3359 background domains (annotatable) @overlap: a list of 10 terms, each containing domains overlapped with input domains @zscore: a vector of 10 terms, containing z-scores @pvalue: a vector of 10 terms, containing p-values @adjp: a vector of 10 terms, containing adjusted p-values In summary, a total of 10 terms ('GOMF') are analysed for a group of 24 input domains ('Pfam')
## 2c) view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=TRUE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0022891 GO:0022891 273 24 3 0.787 0.13 0.30 GO:0022857 GO:0022857 290 24 3 0.677 0.15 0.30 GO:0016740 GO:0016740 767 24 7 0.742 0.16 0.30 GO:0022892 GO:0022892 296 24 3 0.640 0.16 0.30 GO:0005215 GO:0005215 321 24 3 0.492 0.19 0.30 GO:0016787 GO:0016787 690 24 6 0.542 0.21 0.30 GO:0016772 GO:0016772 332 24 3 0.431 0.21 0.30 GO:0003824 GO:0003824 2241 24 17 0.429 0.26 0.33 GO:0005515 GO:0005515 445 24 3 -0.108 0.40 0.44 GO:0005488 GO:0005488 730 24 4 -0.604 0.62 0.62 term_name GO:0022891 substrate-specific transmembrane transporter activity GO:0022857 transmembrane transporter activity GO:0016740 transferase activity GO:0022892 substrate-specific transporter activity GO:0005215 transporter activity GO:0016787 hydrolase activity GO:0016772 transferase activity, transferring phosphorus-containing groups GO:0003824 catalytic activity GO:0005515 protein binding GO:0005488 binding term_namespace term_distance GO:0022891 molecular_function 3 GO:0022857 molecular_function 2 GO:0016740 molecular_function 2 GO:0022892 molecular_function 2 GO:0005215 molecular_function 1 GO:0016787 molecular_function 2 GO:0016772 molecular_function 3 GO:0003824 molecular_function 1 GO:0005515 molecular_function 2 GO:0005488 molecular_function 1 members GO:0022891 PF00605,PF03573,PF04613 GO:0022857 PF00605,PF03573,PF04613 GO:0016740 PF06214,PF00553,PF06573,PF02117,PF01735,PF01777,PF03007 GO:0022892 PF00605,PF03573,PF04613 GO:0005215 PF00605,PF03573,PF04613 GO:0016787 PF02812,PF03577,PF00772,PF10255,PF04561,PF04801 GO:0016772 PF06573,PF02117,PF01735 GO:0003824 PF06214,PF09293,PF02812,PF00553,PF00639,PF03577,PF06573,PF00772,PF02117,PF10255,PF04561,PF03971,PF01735,PF00034,PF01777,PF03007,PF04801 GO:0005515 PF06293,PF00772,PF00034 GO:0005488 PF06293,PF00772,PF03820,PF00034
## 2d) visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOMF' containing 7 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
## 2e) the same as above but using a customised background ### randomly select 1000 domains as background background <- sample(rowNames(Pfam), 1000) ### perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, background=background, domain="Pfam", ontology="GOMF")
Start at 2015-07-23 12:52:30 First, load the ontology 'GOMF', the domain 'Pfam', and their associations (2015-07-23 12:52:30) ... 'onto.GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Pfam' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Pfam2GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:52:37) ... There are 32 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:52:37) ... End at 2015-07-23 12:52:37 Runtime in total is: 7 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'Pfam' @ontology: 'GOMF' @term_info: a data.frame of 10 terms X 5 information @anno: a list of 10 terms, each storing annotated domains @data: a vector containing a group of 24 input domains (annotatable) @background: a vector containing a group of 242 background domains (annotatable) @overlap: a list of 10 terms, each containing domains overlapped with input domains @zscore: a vector of 10 terms, containing z-scores @pvalue: a vector of 10 terms, containing p-values @adjp: a vector of 10 terms, containing adjusted p-values In summary, a total of 10 terms ('GOMF') are analysed for a group of 24 input domains ('Pfam')
### view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=TRUE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0016787 GO:0016787 42 24 6 1.0400 0.097 0.32 GO:0016772 GO:0016772 22 24 3 0.6110 0.160 0.32 GO:0022857 GO:0022857 23 24 3 0.5260 0.180 0.32 GO:0022892 GO:0022892 23 24 3 0.5260 0.180 0.32 GO:0022891 GO:0022891 23 24 3 0.5260 0.180 0.32 GO:0005215 GO:0005215 25 24 3 0.3670 0.220 0.32 GO:0016740 GO:0016740 60 24 7 0.5220 0.220 0.32 GO:0003824 GO:0003824 166 24 17 0.2480 0.320 0.40 GO:0005515 GO:0005515 31 24 3 -0.0478 0.370 0.41 GO:0005488 GO:0005488 50 24 4 -0.5080 0.580 0.58 term_name GO:0016787 hydrolase activity GO:0016772 transferase activity, transferring phosphorus-containing groups GO:0022857 transmembrane transporter activity GO:0022892 substrate-specific transporter activity GO:0022891 substrate-specific transmembrane transporter activity GO:0005215 transporter activity GO:0016740 transferase activity GO:0003824 catalytic activity GO:0005515 protein binding GO:0005488 binding term_namespace term_distance GO:0016787 molecular_function 2 GO:0016772 molecular_function 3 GO:0022857 molecular_function 2 GO:0022892 molecular_function 2 GO:0022891 molecular_function 3 GO:0005215 molecular_function 1 GO:0016740 molecular_function 2 GO:0003824 molecular_function 1 GO:0005515 molecular_function 2 GO:0005488 molecular_function 1 members GO:0016787 PF10255,PF04801,PF00772,PF03577,PF02812,PF04561 GO:0016772 PF06573,PF02117,PF01735 GO:0022857 PF04613,PF00605,PF03573 GO:0022892 PF04613,PF00605,PF03573 GO:0022891 PF04613,PF00605,PF03573 GO:0005215 PF04613,PF00605,PF03573 GO:0016740 PF06573,PF06214,PF03007,PF00553,PF02117,PF01777,PF01735 GO:0003824 PF10255,PF00639,PF04801,PF06573,PF06214,PF00772,PF00034,PF03007,PF03577,PF00553,PF03971,PF02812,PF09293,PF02117,PF04561,PF01777,PF01735 GO:0005515 PF00772,PF00034,PF06293 GO:0005488 PF03820,PF00772,PF00034,PF06293
### visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOMF' containing 9 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
########################################################### # 3) Enrichment analysis for InterPro domains (InterPro) ## 3a) load InterPro (as 'InfoDataFrame' object) InterPro <- dcRDataLoader('InterPro')
'InterPro' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment
### randomly select 100 domains as a list of domains of interest data <- sample(rowNames(InterPro), 100) ## 3b) perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, domain="InterPro", ontology="GOMF")
Start at 2015-07-23 12:52:51 First, load the ontology 'GOMF', the domain 'InterPro', and their associations (2015-07-23 12:52:51) ... 'onto.GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'InterPro' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'InterPro2GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:53:15) ... There are 630 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:53:15) ... End at 2015-07-23 12:53:15 Runtime in total is: 24 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'InterPro' @ontology: 'GOMF' @term_info: a data.frame of 65 terms X 5 information @anno: a list of 65 terms, each storing annotated domains @data: a vector containing a group of 79 input domains (annotatable) @background: a vector containing a group of 8899 background domains (annotatable) @overlap: a list of 65 terms, each containing domains overlapped with input domains @zscore: a vector of 65 terms, containing z-scores @pvalue: a vector of 65 terms, containing p-values @adjp: a vector of 65 terms, containing adjusted p-values In summary, a total of 65 terms ('GOMF') are analysed for a group of 79 input domains ('InterPro')
## 3c) view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=TRUE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0016814 GO:0016814 37 79 3 4.69 0.0003 0.02 GO:0015631 GO:0015631 72 79 3 2.98 0.0037 0.10 GO:0016879 GO:0016879 136 79 4 2.57 0.0071 0.10 GO:0008092 GO:0008092 88 79 3 2.53 0.0076 0.10 GO:0004857 GO:0004857 89 79 3 2.51 0.0079 0.10 GO:1901981 GO:1901981 210 79 5 2.33 0.0110 0.12 GO:0016874 GO:0016874 234 79 5 2.06 0.0170 0.14 GO:0035091 GO:0035091 236 79 5 2.04 0.0180 0.14 GO:0005543 GO:0005543 239 79 5 2.01 0.0190 0.14 GO:0016810 GO:0016810 250 79 5 1.90 0.0230 0.15 term_name GO:0016814 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amidines GO:0015631 tubulin binding GO:0016879 ligase activity, forming carbon-nitrogen bonds GO:0008092 cytoskeletal protein binding GO:0004857 enzyme inhibitor activity GO:1901981 phosphatidylinositol phosphate binding GO:0016874 ligase activity GO:0035091 phosphatidylinositol binding GO:0005543 phospholipid binding GO:0016810 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds term_namespace term_distance GO:0016814 molecular_function 4 GO:0015631 molecular_function 4 GO:0016879 molecular_function 3 GO:0008092 molecular_function 3 GO:0004857 molecular_function 2 GO:1901981 molecular_function 6 GO:0016874 molecular_function 2 GO:0035091 molecular_function 5 GO:0005543 molecular_function 3 GO:0016810 molecular_function 3 members GO:0016814 IPR010048,IPR027147,IPR001021 GO:0015631 IPR001327,IPR001308,IPR026770 GO:0016879 IPR011009,IPR022414,IPR015911,IPR008055 GO:0008092 IPR001327,IPR001308,IPR026770 GO:0004857 IPR007312,IPR006932,IPR003175 GO:1901981 IPR028382,IPR011804,IPR004044,IPR001890,IPR003286 GO:0016874 IPR011009,IPR022414,IPR015911,IPR017427,IPR008055 GO:0035091 IPR028382,IPR011804,IPR004044,IPR001890,IPR003286 GO:0005543 IPR028382,IPR011804,IPR004044,IPR001890,IPR003286 GO:0016810 IPR010801,IPR010048,IPR010052,IPR027147,IPR001021
## 3d) visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOMF' containing 13 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
## 3e) the same as above but using a customised background ### randomly select 1000 domains as background background <- sample(rowNames(InterPro), 1000) ### perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, background=background, domain="InterPro", ontology="GOMF")
Start at 2015-07-23 12:53:25 First, load the ontology 'GOMF', the domain 'InterPro', and their associations (2015-07-23 12:53:25) ... 'onto.GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'InterPro' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'InterPro2GOMF' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:53:41) ... There are 136 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:53:41) ... End at 2015-07-23 12:53:41 Runtime in total is: 16 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'InterPro' @ontology: 'GOMF' @term_info: a data.frame of 64 terms X 5 information @anno: a list of 64 terms, each storing annotated domains @data: a vector containing a group of 79 input domains (annotatable) @background: a vector containing a group of 831 background domains (annotatable) @overlap: a list of 64 terms, each containing domains overlapped with input domains @zscore: a vector of 64 terms, containing z-scores @pvalue: a vector of 64 terms, containing p-values @adjp: a vector of 64 terms, containing adjusted p-values In summary, a total of 64 terms ('GOMF') are analysed for a group of 79 input domains ('InterPro')
### view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=TRUE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:1901981 GO:1901981 19 79 5 2.53 0.0061 0.13 GO:0035091 GO:0035091 20 79 5 2.39 0.0080 0.13 GO:0016810 GO:0016810 21 79 5 2.26 0.0100 0.13 GO:0005543 GO:0005543 22 79 5 2.14 0.0130 0.13 GO:0005488 GO:0005488 153 79 21 1.97 0.0200 0.13 GO:0043167 GO:0043167 60 79 10 1.96 0.0200 0.13 GO:0004857 GO:0004857 12 79 3 1.84 0.0210 0.13 GO:0015631 GO:0015631 12 79 3 1.84 0.0210 0.13 GO:0043168 GO:0043168 53 79 9 1.92 0.0220 0.13 GO:0016879 GO:0016879 18 79 4 1.86 0.0220 0.13 term_name GO:1901981 phosphatidylinositol phosphate binding GO:0035091 phosphatidylinositol binding GO:0016810 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds GO:0005543 phospholipid binding GO:0005488 binding GO:0043167 ion binding GO:0004857 enzyme inhibitor activity GO:0015631 tubulin binding GO:0043168 anion binding GO:0016879 ligase activity, forming carbon-nitrogen bonds term_namespace term_distance GO:1901981 molecular_function 6 GO:0035091 molecular_function 5 GO:0016810 molecular_function 3 GO:0005543 molecular_function 3 GO:0005488 molecular_function 1 GO:0043167 molecular_function 2 GO:0004857 molecular_function 2 GO:0015631 molecular_function 4 GO:0043168 molecular_function 3 GO:0016879 molecular_function 3 members GO:1901981 IPR004044,IPR028382,IPR011804,IPR003286,IPR001890 GO:0035091 IPR004044,IPR028382,IPR011804,IPR003286,IPR001890 GO:0016810 IPR010052,IPR001021,IPR027147,IPR010048,IPR010801 GO:0005543 IPR004044,IPR028382,IPR011804,IPR003286,IPR001890 GO:0005488 IPR001308,IPR012758,IPR004044,IPR028382,IPR026770,IPR020469,IPR006335,IPR005101,IPR029325,IPR000681,IPR015570,IPR011804,IPR000957,IPR008757,IPR002653,IPR023957,IPR017375,IPR017427,IPR003286,IPR001327,IPR001890 GO:0043167 IPR012758,IPR004044,IPR028382,IPR015570,IPR011804,IPR002653,IPR017375,IPR017427,IPR003286,IPR001890 GO:0004857 IPR003175,IPR007312,IPR006932 GO:0015631 IPR001308,IPR026770,IPR001327 GO:0043168 IPR012758,IPR004044,IPR028382,IPR015570,IPR011804,IPR002653,IPR017375,IPR003286,IPR001890 GO:0016879 IPR022414,IPR011009,IPR015911,IPR008055
### visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOMF' containing 9 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
########################################################### # 4) Enrichment analysis for Rfam RNA families (Rfam) ## 4a) load Rfam (as 'InfoDataFrame' object) Rfam <- dcRDataLoader('Rfam')
'Rfam' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment
### randomly select 100 RNAs as a list of RNAs of interest data <- sample(rowNames(Rfam), 100) ## 4b) perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, domain="Rfam", ontology="GOBP")
Start at 2015-07-23 12:53:58 First, load the ontology 'GOBP', the domain 'Rfam', and their associations (2015-07-23 12:53:58) ... 'onto.GOBP' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Rfam' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Rfam2GOBP' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:54:06) ... There are 114 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:54:06) ... End at 2015-07-23 12:54:06 Runtime in total is: 8 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'Rfam' @ontology: 'GOBP' @term_info: a data.frame of 24 terms X 5 information @anno: a list of 24 terms, each storing annotated domains @data: a vector containing a group of 63 input domains (annotatable) @background: a vector containing a group of 1377 background domains (annotatable) @overlap: a list of 24 terms, each containing domains overlapped with input domains @zscore: a vector of 24 terms, containing z-scores @pvalue: a vector of 24 terms, containing p-values @adjp: a vector of 24 terms, containing adjusted p-values In summary, a total of 24 terms ('GOBP') are analysed for a group of 63 input domains ('Rfam')
## 4c) view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=FALSE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0050794 GO:0050794 61 63 5 1.3800 0.056 0.86 GO:0050789 GO:0050789 81 63 5 0.7090 0.160 0.86 GO:0065007 GO:0065007 85 63 5 0.5950 0.190 0.86 GO:0000376 GO:0000376 522 63 25 0.2970 0.330 0.86 GO:0000372 GO:0000372 522 63 25 0.2970 0.330 0.86 GO:0008380 GO:0008380 542 63 25 0.0535 0.420 0.86 GO:0000375 GO:0000375 541 63 25 0.0656 0.420 0.86 GO:0006396 GO:0006396 1225 63 55 -0.4300 0.610 0.86 GO:0016070 GO:0016070 1237 63 55 -0.6800 0.690 0.86 GO:0090304 GO:0090304 1239 63 55 -0.7240 0.710 0.86 term_name GO:0050794 regulation of cellular process GO:0050789 regulation of biological process GO:0065007 biological regulation GO:0000376 RNA splicing, via transesterification reactions with guanosine as nucleophile GO:0000372 Group I intron splicing GO:0008380 RNA splicing GO:0000375 RNA splicing, via transesterification reactions GO:0006396 RNA processing GO:0016070 RNA metabolic process GO:0090304 nucleic acid metabolic process
## 4d) visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOBP' containing 17 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
## 4e) the same as above but using a customised background ### randomly select 1000 RNAs as background background <- sample(rowNames(Rfam), 1000) ### perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, background=background, domain="Rfam", ontology="GOBP")
Start at 2015-07-23 12:54:47 First, load the ontology 'GOBP', the domain 'Rfam', and their associations (2015-07-23 12:54:47) ... 'onto.GOBP' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Rfam' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment 'Rfam2GOBP' (from package 'dcGOR' version 1.0.5) has been loaded into the working environment Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:54:56) ... There are 62 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:54:56) ... End at 2015-07-23 12:54:56 Runtime in total is: 9 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'Rfam' @ontology: 'GOBP' @term_info: a data.frame of 24 terms X 5 information @anno: a list of 24 terms, each storing annotated domains @data: a vector containing a group of 63 input domains (annotatable) @background: a vector containing a group of 650 background domains (annotatable) @overlap: a list of 24 terms, each containing domains overlapped with input domains @zscore: a vector of 24 terms, containing z-scores @pvalue: a vector of 24 terms, containing p-values @adjp: a vector of 24 terms, containing adjusted p-values In summary, a total of 24 terms ('GOBP') are analysed for a group of 63 input domains ('Rfam')
### view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=FALSE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0050794 GO:0050794 36 63 5 0.875 0.12 0.89 GO:0050789 GO:0050789 43 63 5 0.444 0.23 0.89 GO:0065007 GO:0065007 45 63 5 0.333 0.26 0.89 GO:0000376 GO:0000376 240 63 25 0.477 0.27 0.89 GO:0000372 GO:0000372 240 63 25 0.477 0.27 0.89 GO:0000375 GO:0000375 249 63 25 0.236 0.35 0.89 GO:0008380 GO:0008380 250 63 25 0.209 0.36 0.89 GO:0006396 GO:0006396 576 63 55 -0.345 0.57 0.89 GO:0016070 GO:0016070 578 63 55 -0.431 0.60 0.89 GO:0090304 GO:0090304 580 63 55 -0.519 0.64 0.89 term_name GO:0050794 regulation of cellular process GO:0050789 regulation of biological process GO:0065007 biological regulation GO:0000376 RNA splicing, via transesterification reactions with guanosine as nucleophile GO:0000372 Group I intron splicing GO:0000375 RNA splicing, via transesterification reactions GO:0008380 RNA splicing GO:0006396 RNA processing GO:0016070 RNA metabolic process GO:0090304 nucleic acid metabolic process
### visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'GOBP' containing 17 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)
########################################################### # 5) Advanced usage: customised data for domain, ontology and annotations # 5a) create domain, ontology and annotations ## for domain domain <- dcBuildInfoDataFrame(input.file="http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt", output.file="domain.RData")
An object of S4 class 'InfoDataFrame' has been built and saved into '/Users/hfang/Sites/SUPERFAMILY/dcGO/dcGOR/domain.RData'.
## for ontology dcBuildOnto(relations.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_edges.txt", nodes.file="http://dcgor.r-forge.r-project.org/data/onto/igraph_GOMF_nodes.txt", output.file="ontology.RData")
An object of S4 class 'Onto' has been built and saved into '/Users/hfang/Sites/SUPERFAMILY/dcGO/dcGOR/ontology.RData'.
## for annotations dcBuildAnno(domain_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/InterPro.txt", term_info.file="http://dcgor.r-forge.r-project.org/data/InterPro/GO.txt", association.file="http://dcgor.r-forge.r-project.org/data/InterPro/Domain2GOMF.txt", output.file="annotations.RData")
An object of S4 class 'Anno' has been built and saved into '/Users/hfang/Sites/SUPERFAMILY/dcGO/dcGOR/annotations.RData'.
## 5b) prepare data and background ### randomly select 100 domains as a list of domains of interest data <- sample(rowNames(domain), 100) ### randomly select 1000 domains as background background <- sample(rowNames(domain), 1000) ## 5c) perform enrichment analysis, producing an object of S4 class 'Eoutput' eoutput <- dcEnrichment(data, background=background, domain.RData='domain.RData', ontology.RData='ontology.RData', annotations.RData='annotations.RData')
Start at 2015-07-23 12:55:42 First, load customised ontology 'ontology.RData', the domain 'domain.RData', and their associations 'annotations.RData' (2015-07-23 12:55:42)... Second, perform enrichment analysis using HypergeoTest (2015-07-23 12:56:04) ... There are 143 terms being used, each restricted within [10,1000] annotations Last, adjust the p-values using the BH method (2015-07-23 12:56:04) ... End at 2015-07-23 12:56:04 Runtime in total is: 22 secs
eoutput
An object of S4 class 'Eoutput', containing following slots: @domain: 'domain.RData' @ontology: 'ontology.RData' @term_info: a data.frame of 61 terms X 5 information @anno: a list of 61 terms, each storing annotated domains @data: a vector containing a group of 79 input domains (annotatable) @background: a vector containing a group of 852 background domains (annotatable) @overlap: a list of 61 terms, each containing domains overlapped with input domains @zscore: a vector of 61 terms, containing z-scores @pvalue: a vector of 61 terms, containing p-values @adjp: a vector of 61 terms, containing adjusted p-values In summary, a total of 61 terms ('ontology.RData') are analysed for a group of 79 input domains ('domain.RData')
## 5d) view the top 10 significance terms view(eoutput, top_num=10, sortBy="pvalue", details=TRUE)
term_id nAnno nGroup nOverlap zscore pvalue adjp GO:0016301 GO:0016301 49 79 10 2.77 0.0034 0.21 GO:0008233 GO:0008233 10 79 3 2.27 0.0093 0.24 GO:0016860 GO:0016860 11 79 3 2.07 0.0140 0.24 GO:0030234 GO:0030234 20 79 4 1.67 0.0310 0.24 GO:0016773 GO:0016773 42 79 7 1.69 0.0330 0.24 GO:0015181 GO:0015181 51 79 8 1.63 0.0380 0.24 GO:0015174 GO:0015174 51 79 8 1.63 0.0380 0.24 GO:0016772 GO:0016772 77 79 11 1.59 0.0430 0.24 GO:0004672 GO:0004672 30 79 5 1.42 0.0510 0.24 GO:0004713 GO:0004713 16 79 3 1.32 0.0530 0.24 term_name GO:0016301 kinase activity GO:0008233 peptidase activity GO:0016860 intramolecular oxidoreductase activity GO:0030234 enzyme regulator activity GO:0016773 phosphotransferase activity, alcohol group as acceptor GO:0015181 arginine transmembrane transporter activity GO:0015174 basic amino acid transmembrane transporter activity GO:0016772 transferase activity, transferring phosphorus-containing groups GO:0004672 protein kinase activity GO:0004713 protein tyrosine kinase activity term_namespace term_distance GO:0016301 molecular_function 4 GO:0008233 molecular_function 3 GO:0016860 molecular_function 3 GO:0030234 molecular_function 1 GO:0016773 molecular_function 4 GO:0015181 molecular_function 6 GO:0015174 molecular_function 9 GO:0016772 molecular_function 3 GO:0004672 molecular_function 5 GO:0004713 molecular_function 6 members GO:0016301 IPR012750,IPR005778,IPR011925,IPR024193,IPR006295,IPR022917,IPR002314,IPR010196,IPR023517,IPR027686 GO:0008233 IPR013347,IPR005778,IPR012400 GO:0016860 IPR012829,IPR009169,IPR019805 GO:0030234 IPR020455,IPR012686,IPR023489,IPR004628 GO:0016773 IPR012750,IPR005778,IPR006295,IPR022917,IPR002314,IPR010196,IPR023517 GO:0015181 IPR007984,IPR008593,IPR001510,IPR024193,IPR027289,IPR013499,IPR003851,IPR006779 GO:0015174 IPR007984,IPR008593,IPR001510,IPR024193,IPR027289,IPR013499,IPR003851,IPR006779 GO:0016772 IPR012750,IPR005778,IPR011925,IPR024193,IPR006295,IPR022917,IPR002314,IPR000385,IPR010196,IPR023517,IPR027686 GO:0004672 IPR012750,IPR022917,IPR002314,IPR010196,IPR023517 GO:0004713 IPR012750,IPR022917,IPR010196
### visualise the top 10 significant terms in the ontology hierarchy ### color-coded according to 10-based negative logarithm of adjusted p-values (adjp) visEnrichment(eoutput)
Ontology 'ontology.RData' containing 11 nodes/terms (including 5 in query; also highlighted in frame) has been shown in your screen, with colorbar indicating -1*log10(adjusted p-values)